Crowd Video Analysis

François-Noël Martin
Main informations required by security agents:

- Density of the people in an area. Why?
 - Danger when an area reaches an important occupation level
- Local - or global - abnormal movements in the crowd
 - Acceleration of the people speed (panic movement)
 - High speed of a high density crowd (general panic movement)
 - Spacing of a point (local danger)
 - Local people grouping (someone needing help, fight)
Examples of abnormal crowds movements
Motion analysis

- Generally divided into four steps:
 - **Detection**: extracts temporal changes
 - **Estimation**: computes velocity vectors of the movement
 - **Segmentation**: groups pixels which have similar displacement vectors
 - **Tracking**: builds the trajectories

- Some steps can be omitted
Motion estimation techniques existing:

- **Primitive Matching Techniques**
 - Block Matching

- **Differential Techniques**
 - Optical Flow:
 - Lucas & Kanade method
 - Horn & Schunk method

- **Frequential Techniques**
 - Gabor Filters
Motion estimation

➢ Block Matching:
 ➢ Principle:
 ➢ Divide images into small blocks
 ➢ Match them between two successives images according to a similitude criteria
 ➢ Two choices:
 ➢ Block size
 ➢ Small size: correct results for a low computational cost
 ➢ Similitude function
 ➢ Distance measure than a correlation measure
Motion estimation

➢ **Optical Flow:**
 ➢ **Principle:**
 ➢ Hypothesis: brightness of a particular moving point constant in time
 ➢ Equation: \(f(x+dx, y+dy, t+dt) - f(x, y, t) = 0 \)
 \[\nabla f \cdot w = -\frac{\partial f}{\partial t} \]

➢ **Horn & Schunck Method:** B.K.P. Horn, B.G. Schunck - «Determining optical flow» - Artificial Intelligence, 1981
 ➢ Variation of the velocity vector is smooth from a point to his neighbour

➢ **Lucas & Kanade Method:** B.D. Lucas, T. Kanade - «An Iterative Image Registration Technique with an Application in Stereo Vision» - 7th IJCAI, 1981
 ➢ Minimize the cost function:
 \[E = \sum_{x,y \in \text{Image}} \left[f(x+dx, y+dy, t+dt) - f(x, y, t) \right]^2 \]
Motion estimation

➢ Gabor Filters

➢ Principle:
 ➢ Convolve the image with a set of Gabor filters
 ➢ Solve a set of equations to get the displacement vectors

➢ Properties:
 ➢ Very accurate
 ➢ But very time consuming

D.J. Fleet, A.D. Jepson - «Computation of component image velocity from local phase information» - IJCV
Motion estimation

➢ Displacement vectors filtering
 ➢ To smooth the motion field
 ➢ To delete vectors of interference movements (arms, legs, ...)
 ➢ Two kinds of filters for example:
 ➢ Spatial filtering
 ➢ Temporal filtering
Purpose:
- When congestion in a place exceeds a certain level: Potential danger may occur for a variety of reasons

Difficult problem:
- Only parts of the people body appears
- As crowd density increases:
 - The overlap among crowd members gets worse
Methods based on the extraction of significant features:

- **Statistical approach by Davies:**

 Principle:
 - Extraction of features by background removal or edge detection
 - Statistical comparison of the pixel number returned in the binary image with a data base of experiments

Problem:

- Need of a data base of experiments (manual count)

Methods based on the extraction of significant features:

- **Minkowski fractal dimension**

 Principle:
 - Extraction of edges
 - \(n \) dilatations are computed from the binary image. For each:
 - Computation of black pixels
 - Update of a graphic with the dilatation number on abscissa and pixel number on ordinate
 - Computation of the fractal dimension from the graphic
 - By the fractal dimension: determination of the classe of crowd density

 Problem:
 - Need of a data base of experiments to associate to each density class a fractal dimension range

Density estimation

Example with very low and very high density of crowds
Density estimation

➢ Method based on blob tracking
 ➢ Principle:
 ➢ Separation objects from the background
 ➢ Classification of each object:
 ➢ human or not? Analyse based on their size or their shape
 ➢ Problems:
 ➢ Precise object extraction is hardly possible
 ➢ Difficults to distinguish people which occlude each other properly