MORYNE: city traffic flow data collection through public transport vehicles

Christophe Parisot, Jérôme Meessen, Agnès Lapeyronnie
Multitel ASBL, Mons, Belgium
MORYNE

- Enhancement of public transport efficiency through the use of mobile sensor networks
- FP6-STREP EU co-funded project
- Partners:
 - EADS Secure Networks, France
 - EADS Secure Networks, Germany
 - Multitel ASBL, Belgium
 - Martec, France
 - Temex ceramics, France
 - GMV systemas, Spain
 - Euskaltel, Spain
 - UASO, Germany
 - BVG, Germany
 - AED, Belgium
 - KTI, Hungary
- 27 months. Project total budget: 4,000,000 euros

3rd Multitel workshop on video analysis – 30th May 2008
MORYNE objectives

3rd Multitel workshop on video analysis – 30th May 2008
Image processing

- Objectives
- Inputs and outputs
- Algorithm
 - Overview
 - Extraction of low-level information
 - High-level decisions
- Setup of the system
- Results
- Conclusion
Objectives

• With video sensors looking outside of the bus
 – Advertise the PTCC about the surrounding situation of the road traffic when busses are operating on dedicated lanes.
 – Gather traffic data that are not available with state-of-the-art fixed sensors (e.g. Potsdamer straße).
 – Send alarms when congestions are presumed.
 – Send alarms when bus lane violations are presumed.

• Constraints
 – No driver intervention required
 – Real time processing
 – Embedded platform (low CPU and memory resources)
 – Outdoor video conditions
Inputs and outputs

– Inputs

• Live video of the bus surroundings:

• Odometer and GPS data (speed and context of the bus):

– Outputs

• Traffic flow classification
• Congestion alarms
• Bus lane violation alarms

3rd Multitel workshop on video analysis – 30th May 2008
Algorithm Overview

- Video data
 - Extraction of speeds relative to the bus
 - Odometer data
 - Extraction of speeds relative to the road
 - Classification of instantaneous speeds
 - Traffic flow classification and alarms
Algorithm
Extraction of apparent speeds

• Define tracklines as segments aligned with the road within the image processing Region Of Interest

Region Of Interest
Algorithm
Extraction of apparent speeds

- Along each trackline, extract features such as
 - minimum and maximum of luminance
 - minimum and maximum of the gradient
Algorithm
Extraction of apparent speeds

- Perform feature matching among time for each trackline
- Merge information per lane
Algorithm
Correction of speeds

Extraction of speeds relative to the road:

\[\text{absolute_speed} = \text{apparent_speed} + \text{bus_speed} \]

Correction of speeds:

\[\text{true_speed} = \text{absolute_speed} \times \frac{(\text{camera_height} - \text{features_height})}{\text{camera_height}} \]
Algorithm
Detection of coloured vehicle features

• In order to differentiate between vehicles and ground marks when speeds are very low.
Algorithm
High level decisions

- Inputs
 - From the odometer/GPS:
 - History of odometer information every second
 - History of bus context information (e.g. bus lane position)
 - From previous image processing steps:
 - History of extracted speed every second
 - History of coloured vehicle features observations

- Outputs
 - Traffic flow classification
 - Congestion alarms
 - Bus lane violations alarms
Algorithm: Instantaneous speeds classification

- < 10 km/h without colour information: these are ground markings. The traffic is fluid.
- < 30 km/h: the traffic is congested.
- < 40 km/h: the traffic is busy.
- > 40 km/h: the traffic is fluid.
Algorithm
Traffic flow classification

– Congestion
 • $speed < congestion_{speed_threshold}$ AND
 • $queue_{length} > queue_{length_threshold}$

– Slow down
 • $speed < congestion_{speed_threshold}$ AND
 • $queue_{length} > \alpha \times queue_{length_threshold}$

– Busy
 • $speed < busy_{speed_threshold}$ AND
 • Vehicles observed for more than half the observed period AND
 • Vehicles observed for more than half the distance operated

– Free-flow
 • Few vehicles, high speeds, etc.
Algorithm
Raising of congestion alarms

- Take past information into account
- Compute the observed queue length
- Raise alarm

\[\text{queue_length} = (\text{vehicles_speed} - \text{bus_speed}) \times \text{duration} \]

Congestion alarm when:

\[\text{Abs(queue_length)} - \text{distance_other} > 50 \text{ m} \]
Algorithm
Raising of bus lane violations alarms

- Take past information into account

- If vehicle presence on bus lane within the image processing region of interest ➔ raise an alarm.
Setup of the system

– Physical installation

– Software setup
Setup of the system
Camera installation

Image processing region of interest

3rd Multitel workshop on video analysis – 30th May 2008
Setup of the system
Camera calibration

Initialisation of the calibration plugin

3rd Multitel workshop on video analysis – 30th May 2008
Setup of the system
Camera calibration

Select straight lines

3rd Multitel workshop on video analysis – 30th May 2008
Setup of the system
Camera calibration

Automatic computation of the distortion parameters

3rd Multitel workshop on video analysis – 30th May 2008
Setup of the system
Camera calibration

Indicate reference measures

3rd Multitel workshop on video analysis – 30th May 2008
Setup of the system
Camera calibration

Result of the calibration

3rd Multitel workshop on video analysis – 30th May 2008
Setup of the system Configuration

3rd Multitel workshop on video analysis – 30th May 2008
Results
Traffic data outputs

• Video duration: 8 min
• Weather conditions: rain and white splashes on the road
• Traffic flow classification updates: 30 s
• Congestion queue length threshold: 50 m

Real time image processing demonstration
Results of the image processing algorithm
Results
Traffic data outputs

3rd Multitel workshop on video analysis – 30th May 2008
Results
Accuracy of speeds

Average speed over periods of 12 minutes over a 3-day period

Time

Reference Proposed algorithm

3rd Multitel workshop on video analysis – 30th May 2008
Objective evaluation

• 128 minutes of video including 38 bus lane violations and 5 congestions of more than 50 meters length

• Bus lane violations:
 – 55% true detections and 2.6% false detections

• Congestion alarms:
 – 100% true detections and 0% false detections

• Traffic flow classification
 – 4 classes: fluid, busy, slow down, congestion
 • 89% good classifications, 9% with one-class error, 2% with two-classes error
 – 3 classes: normal, slow down, congestion
 • 96% good classifications, 4% with one-class error
Conclusion

- Feature tracking
 - Fit vehicle movements
 - Compact representation
 - Algorithm complexity reduced
 - Easier to process in real time environment
 - Processing power and cost of the embedded platform reduced
 - Robust to environmental conditions (e.g. when compared to pattern recognition techniques, etc.)
Conclusion

• Solution already runs on the MORYNE embedded platform
• Good subjective traffic flow classification with 4 classes
• Good flow speed accuracy when compared with state of the art traffic sensors
• Able to detect most bus lane violations
Q&A

Thanks for your attention!

http://www.fp6-moryne.org