AUTOMATIC SCENE ACTIVITY MODELLING AND ANOMALY DETECTION IN VIDEO FOOTAGE
OUTLINES

- Goal of this task
- Dataset used
- Particles tracking
- Cascade HMM/HDP-HMM
- Experiments
- Perspectives
AUTOMATIC SCENE ACTIVITY MODELLING

Goal: Construct a model which:
- automatically discover normal activities
- avoid manual labelling data
- recognize normal activities and consequently abnormal activities *on-the-fly*
- is based on **low level features**

Dataset used:

![Dataset Example 1](image1)

![Dataset Example 2](image2)
CASCADE OF HMM/HDP-HMM: MAIN STEPS

1. Video
2. Particle tracking
3. HMM
4. Trajectory classes
5. HDP-HMM
6. Activities & Temporal relations
Particle tracking:

- **Random** initialization of inactive particles
- Activation with a **frame-differencing** threshold
- Tracking active particle with **bloc-matching**.
- **Filtering** of the trajectories (linearity, length, orientation...)

![Image of particle tracking](image-url)
HMM:

HMM with gaussian mixture:

- Input features: position of the point \((x,y)\) and mean direction (angle)
- Observation sequence = trajectory
- Output: trajectory classes
HDP-HMM:

- Infinite Hidden Markov Model: Generalization of HMM
- Use DP to model the lines of the transition/emission matrix

\[v_t : \text{state at time } t \]
\[y_t : \text{observations at time } t \]
\[\phi_k : \text{probability distribution over the possible observations} \]
\[\pi_k : \text{transition probability} \]
\[\gamma, \alpha, H : \text{parameters} \]
HDP-HMM:

- Inputs: trajectory classes appearing during a fix duration (clip) using the Viterbi path
HDP-HMM:

- Inputs: trajectory classes appearing during a fix duration (clip) using the Viterbi path
- Output: Activities & Temporal relation between them
ABNORMALITY MEASURES:

- **Measure on trajectories:**
 - Abnormal value for trajectory \(m \) at time \(t \) given a neighborhood \((N) \) and the HMM parameter \((\lambda) \):

 \[
 AV^m_t = \sum_{n\in N_m} (1 - 2 \times H(LL_t(n) - Thresh))
 \]

 where: \(LL_t(n) = \frac{1}{t} \times \log(P(O_{1:t}(n) / \lambda)) \)

 \(H \): Heaviside step function

- **Measure on clip content:**

 \[
 LL^d_t = \frac{1}{n_d} \times \sum_{y \in d} \left(\log\left(\sum_k \left(P(y / \pi_k) \times P(\pi_k / d) \right) \right) \right)
 \]
EXPERIMENTS:

- Number of trajectory classes: 20
- Clip length: 2s
- Resolution: 320x288
- Frame rate: 30 fps
- Training/Testing: 5min / 1H
ACTIVITIES DISCOVERED BY THE FRAMEWORK:

Sample image with trajectories of each activity:

Activity patterns:
TRANSITION MATRIX DISCOVERED AT THE SECOND LEVEL:

Possible cycles:
- (a)-(b)-(c)-(d)
- (b)-(c)

White = high probability
Black = low probability

Transition from activity (c) to activity (d)
TRANSITION MATRIX DISCOVERED AT THE SECOND LEVEL:

Cycle extracted (non significant probability and self-transition removed):

(a) (b)

(c) (d)
ONLINE ANOMALY DETECTION (FIRST LEVEL MEASURE):
ONLINE ANOMALY DETECTION (SECOND LEVEL MEASURE):
ANOMALY DETECTION:

<table>
<thead>
<tr>
<th></th>
<th>Ground truth</th>
<th>Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illegal U-turn</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Drive wrong way</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Jaywalking</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Uninteresting</td>
<td>-</td>
<td>13</td>
</tr>
</tbody>
</table>

![Precision-Recall Curve](image)
EXPERIMENTS ON METRO:

- Number of trajectory classes: 20
- Clip length: 3s
- Resolution: 704x288
- Frame rate: 5 fps
- Training/Testing: 2H / 1H
ACTIVITIES DISCOVERED BY THE FRAMEWORK:

Activity patterns:
TEMPORAL RELATIONS:

Cycle:
- (a)-(b)-(e)-(f)-(d)

White = high probability
Black = low probability

Transition from activity (c) to activity (d)
TRANSITION MATRIX DISCOVERED AT THE SECOND LEVEL:

Cycle extracted (non significant probability, self-transition and transition implying activity c removed):
ABNORMALITY DETECTION:

- Detect a high density of unseen or rarely seen trajectories.
ABNORMALITY DETECTION:

- Detect behaviors that do not appear alone during the training sequence.
CONCLUSIONS/PERSPECTIVES:

- Conclusions:
 - Encouraging results for activity recognition and abnormality detection tasks
 - Run faster than real-time (~65 fps)

- On-going works and perspectives:
 - Have a less noisy abnormality measure for the HDP-HMM
 - Define a new metric for recognition activity task
 - Add information for static objects
 - Use multi-view information

- Questions?