SV3D-PID controller for Pan-Tilt-Zoom camera auto-tracking

Li Sun

26th June 2012
Program of Presentation
Program of presentation
Traditional video surveillance system requires a large number of fixed cameras.

- to maximize the area of coverage.
- To give a satisfactory resolution of the target.

The shortcomings of such system:

- Cumbersome and costly to use;
- System setup are highly depends on the scene.
We aim to perform tracking by Pan-Tilt-Zoom camera (stationary but rotating and zooming).

PTZ camera advantages:

- One camera used for surveillance of large area.
- Closely look at points of interest.
Automatic and robust PTZ tracking of a target

- Target in the scene is detected and then a tracker is trigged on for it.
- Pan tilt and zoom for camera are controlled based on output from the tracker, so that the system tracks the target smoothly in a autonomous way.

What can you get from our module?

- Target position in image coordinate.
- PTZ parameters describing the camera’s position.
System Setup

- The camera (server) and the computer (client) are connected by network.
- The camera with an HTTP interface, so that the computer can obtain images and control the pan-tilt-zoom motion by sending URL commands in the browser.
System Setup

- Our program implemented on a remote computer, coded in C++.
- How to make our program communicate with the camera?
Implementation of Communication

Implementing a suitable interface: **HTTP client.**

- The camera provides the HTTP API vapix.
- Our interface uses the POCO C++ library

Some functions implemented:
- Move the camera with a given speed,
- Access the video stream with a given resolution,
- Save a favorite camera position.
System Components

- The system is composed of 3 modules: communication, motion detection, and control.
- The communication requires image from the camera, and sends commands to the camera.
- The tracker in the motion detection module estimates the position of the target based on the local point matching between two successive frames.
- The PID (Proportional-Integral-Derivative) controller in the control module sends commands to the camera to perform pan-tilt-zoom motion with a specified speed.
Implementation Flowchart
Implementation Description

We organize the system in following parts:

- **Capture**: the PTZ camera captures the video from the scene.

- **Communication**: PoCo C++ client library and Vapix API send request from the control part to the capture, and receive responses from the capture to the control part.

- **Control**: calculate the PTZ control commands based on the object position given by the tracking part, and send commands to the communication part to motorize the camera.

- **Tracking**: locate object position based on the image and return the object position to the control part.

- **User interface** enables users to watch the result, optionally make the initialization to the tracking part.
Schematic of Our System
Objective:
- to motorize the PTZ motion as smooth as possible.

How: to control on the speed
- To send commands that define the pan-tilt-zoom speed of the camera by a speed index, so that the camera can perform the motion with specified constant speed corresponding to the index;
- Use Proportional–Integral–Derivative (PID) controller to compute the index of speed (p_speed, t_speed, z_speed).
• In order to give a reasonable control, the relationship between the index and the speed needs to be measured.

\[V_{pan} = K v_x^3 \]
• $u(t)$: the input of desired set point (the center point in the image).
• $y(t)$: the output of measured variable (the center of the tracker).
• $e(t)$: the error value between $u(t)$ and $y(t)$.
• $x(t)$: the input to the system (the parameters of the function `setContinuousPTZMotion(int p, int t, int z)`).
• **Proportional** produces an output value that is proportional to the **current error value**.

• **Integral** term is proportional to the sum of the instantaneous error over time.

• **Derivative** is calculated by determining the slope of the error over time.
• The key issue in PID control is to determine the gain coefficients for the proportional, integral and derivative terms respectively.
• In order to facilitate the parameter tuning process and give an evaluation on the PID control scheme in our application, we give an assessment method with simulated video.
Program of Presentation
Assessment Methodology

- Synthetic sequences with object:
 - easy to track (the red circle)
 - easy to control (the trajectory and the speed)
 - Reproducible!

- Protocol:
 - Synthetic sequences projected on a screen
 - PTZ in front of the screen
 - Measure the position of the ball center in the captured video.
Assessment Methodology
Assessment Metric

Various metric can be designed based on this assessment method.
- Accuracy
- Smoothness of the motion of target and camera
- The error of P and PI control scheme
Assessment on the whole system

- Real time test and assessment of the whole system with the integration of the controller and the tracker.
 - Test sequence in typical surveillance environment with the target of the pedestrian or the car.
 - Manually initialize the tracker for the target.
 - Track the target under partial occlusion and different moving speed.
Future Work

- Adaptive PID coefficient gain scheduling
- Use pan-tilt-zoom parameters to help visual tracking
Thank you for your attention!